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Abstract

We illustrate how one can easily derive kinetic energy operators for polyatomic molecules using

polyspherical coordinates with very general choices for z-axis embeddings and angles used to specify

relative orientations of internal vectors. Computer algebra is not required.



I. INTRODUCTION

Mladenovid[1,2] and Gatti et al.[3 5] have presented der!vations of kinetic, energy op-

erators for treating rotations and vibrations of polyatomic molecules using polysphericaI

coordinates. In these coordinates, the N nuclear position veclors are transformed to N - 1

internal vectors and tile nuclear center of mass vector, and the internal vectors are pa-

rameterized bv spherical polar coordinates: l/i, 0i, &_, i = 1, .., N- 1. Then a body-fixed

coordinate system is introduced, defined by aligning the body-fixed z axis along the first

vector, and placing the second vector in the body-fixed :cz plane. The remaining angles

0i, _i are either referenced with respect to the body-fixed z axis, or other vectors.J6]

These coordinates are very useful, but are clearly not the most general choices. One choice

of coordinates that is not treated is well known to be useflfl for triatomics. Sutcliffe and

Tennyson[7] give the kinetic energy operator for triatomics using polyspherical coordinates

in a very general forin, and one finds that their expression having the body-fixed z axis lying

between the two vectors to be very useful. For example, taldng tile body-fixed z axis to

bisect the HOH angle in water gives quite good separation between rotation and vibration.

One can see that this type of embedding might also be useflfl fl)r systems of more than three

atoms. Furthermore, for tetraatomics, it can be useful to have one of the internal angles

giving the relative position of two light atoms, while another vector defines the body-fixed

z axis, e.g. having tile HCH angle in formaldahyde a coordinate while the heavy CO group

defines the body-fixed z axis. In addition, it may be desirable in this example to define

the orientation of HCH as a unit vector relative to CO. While the first is possible using

Mladenovid's[6] local axis coordinates, the second is not. Ir. this work we will present a

method for the derivation of kinetic energy operators for comdinates that encompass all of

these choices.

The method avoids complex intermediate triganometric expresioIls by factorizing out the

dependence on Euler angles, which is an alternative to the s(heme of Lukka,[8] and allows

one to build up the kinetic energy operator for complex systems from fl'agements where the

kinetic energy operator is already known. The treatment of non-orthogonal vectors is also

straightforword as is the introduction of Eckart rotations. We only consider three, four, and

five atom system in the present work, but the techniques described can be easily used to

obtain the kinetic energy operator for more complex systems.
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II. INTERNAL COORDINATES AND GENERAL PLAN

Let X denotethe 3 x N matrix of nuclear coordinates, and × the 3 × N matrix of internal

vectors, with the last vector giving the position of the nuclear center of mass. Then these

vectors are related by

X = xM, (1)

with M an N x N matrix of mass factors. We make two res;rictions on M: first of all its

inverse, denoted 1_I, must exist, and secondly, there is no coltpling of the other vectors to

tile nuclear center of mass vector. For a more in-depth discussion of these mass factors, see

the work of Aquilanti and Cavalli,[9], Bramley and Carrington,[101 and Schwenke.[ll] Then

since the exact kinetic energy operator for the nuclei is

h 2 1 0 2

(2)
where m_ is the mass of nuclei o_, and i runs over z, y, and z. we find that

t52 w--', 1 v-', 02
T (3)

where the reduced mass factors are given by

1 _ Z (4)

One can choose M so that -2-1 is non-zero only when/3 =/3', but that is not a requirement
#B3'

of our theory. So far we have done nothing new.

We next re-write the kinetic energy operator in the symmetric form

r = 5 ' (5)
i._.a, I1_, Ozi;_,

where t means complex conjugate acts to the left. Since the (:enter of mass decouples from

the rest of the internal coordinates, in the sum we will take/3 and/3' to run from 1 to N- 1.

We then seek expressions of tile form

0

OXil 3 __ _ Aji(ctLI?, _LI3 ,_,LB) _ gj:2ld,, (S)
j t

with A a rotation matrix parameterized by the Euler angles c_f_, /3rP, and ?LB, which

take the laboratory frame to the body-frame, g is a matrix depending only on vibrational
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coordinates,and the 0l areoperatorswhich include derivati_eswith respect to vibrational

coordinatesaswell astotal angular momentumcomponents.Then, whenwesubstitute this

into Eq. 5, we obtain

r = O[a.,O,,, (7)
ll'

where

Thus once we know g, we can very easily form G and hence the kinetic energy operator.

To solve for ro-vibrational wave functions, we use the variational principle and analytic

basis functions. Thus we can make explicit use of the symmetric form of the kinetic energy

operator. For users of grid methods, it is required that both derivatives act to the right.

However it is an easy excercise in differential calculus to conv,?rt the symmetric expressions

to the more customary form. When doing this, one must bear in mind that in matrix

elements of the kinetic energy operator of Eq. 7, none of the operators act. on the Jacobian

determinant. However, when one integrates by parts to obtain the expression with both

derivatives acting to the right, the jaeobian determinant is di!ferentiated.

III. ONE VECTOR

Consider a single vector. Its spherical polar form in the space fixed axis system is

S

/i_ sin 0 cos ¢ /

Rsin0sin6/.

Rcos0 ]

(9)

The associated angular mometum vector is given by

f_= ih

( sin0° + cot0cos65
- cos q5° + cot 0sin 65_

0
o0

(10)

\Ve will define a body-fixed z axis to be along S, thus to rotate vectors to this frame of

reference, we will rotate by the rotation matrix A(6, 0, 0) (see Edmonds[12] and 12ef.ll for

rotation conventions), i.e.

_f = A(6, 0, 0)S = (11)
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and

CSC _0 \'

Lbf = A(O'O'O)£ : iT1 I _ I " (1_9)

k 0 j

Now /Tbf is a rather particular angular nlometun_ vector in that it does satis_ _ customary

commutation relations,

easily show that

nornlal or anomolous, SO olle nnlst exercise care in its use. One can

- _ Aji(o,O,O) _-_ _(1),5 (13)
--_X i -- Yjl tJl_

j l

with g(1) given in Table I,. and Ol made up of _5_,0 L_,_f and L_ I.

substituted into Eq. 5 to yield the kinetic energy operator:

L7 -Z-1 #+ L J. (14)2pRu

Substituting Eq. 12 into this yields the well known kinetic energy for a diatomic written in

symmetric form.

This expression can be

IV. TWO VECTORS

In this case Eq. 13 becomes

0

where Oz_

, (15)
OXi_ j I_

-- Lbf2 and L bf2 where thecomprises oR_°, Lbfl_, Lbflyl , and 012 comprises b-_Rj, _z2, y2 ,

superscripts on the angular momentum operators indicates tkey are expressed as in Eq. 12

in the axis system particular to each vector. If our internal coordinates are orthogonal,

i,e. 1/lt_, = 0 when /3 ¢ fl', then we can substitute this into Eq. 5 and simply obtain

the kinetic energy operator for two uncoupled diatomics. This is of course only of passing

interest. To take advantage of the great simplification of tota! angular momentum coupling

or to treat non-orthogonal coordinates, we need to remove the J dependence on the Euler

angles in Eq. 15. When this is done, when we insert the expression for the derivative into

Eq. 5, the rotation matrices vanish because of orthogonality. I'o do this we need to define a

body-fixed coordinate system. This is done by a sequence of three rotations. We first rotate

by A(51,0t, 0), which takes the first vector to the body-fixed z axis and the second vector to

the angles 02 and ¢.). The second rotation is by A(0, 0, ¢2), which takes the second vector to



the x-z plane. The final rotation is A(0, at)2, 0), where a is a parameter running from zero

to one.J7] When a = 0, ttle body-fixed z axis is along the first vector, while when a = 1,

the body-fixed z axis is along the second vector, and when a = 1/2, the body-fixed z axis

bisects the two vectors.

We begin by considering only the first two rotations. We have

0

2__.,gjl_ uh- .__. ---Y'AJ,(¢I,0_,O)_(_)'_
OXil

= Z AJ i(¢1,01,_2) Z "4"J k(0"0'D2)' 2._ ,qkll(1)all'

j k 11

_(1)(_= E Aj_(<,0I,&) Z'#, ,,,
j li

(16)

(lr)

(a8)

where 0 h is the same as Oe_ except that the angular mom entu,rn operators have been rotated

to the body frame of the triatomic. These will be denoted I, xqF and LyB1y. For the second

vector we have

0
-- , , .gjl_ _Jl2

j 12

= Z Aji(¢l,01,0), Z Akj(()2,02,0) _ gnl,,_(l){<,t.,12
j k 12

= E Aj,(<,Ol,D2)_ A,<,(o,g,o)Z _,,,.,(_)a<_,,_.
j k 12

(19)

(20)

(21)

To complete the transformation, we need to express the angular momentum operators

in terms of 577° and the total angular momentum operators. We start by. eliminating L_ F

and Lyqv by introducing the total angular momentum vector J. We have to be careful here.

In the space fixed frame, f = L1 + L2, however we have i_, in the frame BF obtained

by rotating by A((_1, 01, ¢52). If we rotate the space frame f by A(¢I,01,D2), we obtain

an angular nlomentum vector satis_'ing the anomolous commutation relations, thus it is

customary to reverse the signs of the components, and we wi),l do so here as well. Thus we

have

L_" = _ liuF _ Li 2BF. (22)

Next we need BF rbflLi2 . Now _iz is given by Eq. 10 using ¢_ and 0:: as the independent variables,

so we rotate £_i, bvo a(0, 0, ¢2), which _vields LHE.2= ikcot02 o,;° and L.__o'F= -ih o Finally_2" _'

we note that
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and we use this to eliminate the derivative with respect to ¢_ In O_2,

given by Eq. 12 using ¢9 and 0.2 as the independent variables.

In sumniary we now have

we need L bf2 This isi2 "

for 5? =1 and 2 where g(2) is given by Table II with a = 0, and 0t comprizes o o
' cgR] ' OR2

o d_ dyF, and dse where X = 02 is the angle between :he two vectors. We can thenOX ' x , z :

substitute this into Eq. 8, and obtain the well known expression for the triatomic kinetic

and

energy.[13]

For the most part, the introduction of the third rotation i,; straightforward. \\_ insert a

resolution of the identity so that Eq. 24 becomes

0

(.92gifl -- _ Aji(O1,01, _2) _ Amj(O, 002, 0)Amk (0., {102, 0) _ Ykfllt2'_(2) ,._ (25)
j km l

_ _Aji(ci.t,, flLB ),LI,)_ddk(O ' (i.02, O)_ _.(2)/3 (26)-- Idk/3 l tJl ,_

j k l

with (_z.B, flLU and 9 'rB the new Euler angles relating the space fixed frame to the new

body-fixed flame denoted BY. It is straightforward to multiply the matrices A and .0(2) to

get a new effective g (2), but more care needs to be taken to relate f in body fl'ame BF to f

in body frame BY. Formally we are changing variables from 01, 01, ¢'e, and 02 to _Lf_ flCB,

7 LB, and X, where

A((tLB, fl LB, 7 LB) = A(¢I, 0_, ¢2)A(0, a02, 0),

Using the chain rule, we have

c9 Oo L" c9 0fl *'_ 0 09 'rB O O_.LB c9

O_- Ow Ocd+_ + Oa., Off LB + &o 07 r+v+ Oa: OX rB'
(29)

x=O,. (28)

w = ¢1, 01 ¢2 and 02. Now the only nonzero _ occurs for ,.0 = 02, thus the equations for

w -¢ 02 are just the equations describing a rotation by the constant a02, thus

(30)

can be used to eliminate the BF components of the total angular momentum in terms of

the/35- components. This amounts to multiplying the final lhree columns of the result so
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far from the right by At(0, a_}2, 0). The final equation involving 02 is most easily analyzed

considering the instantenous case where ¢1 = 01 = ¢;2 = 0. Then we have

0 0

002--aiJ_? + c9)¢'-- (31)

i.e. the fifth column of the result so far needs to be aumented by -ai times the third column.

Combining all of this together, we have

0 _ , Z (32)
OXiz E AJi( (tI'l_' 3I'B" ,)/LB) (2) *

j t

with g(2) given by Table II and 0t comprizing o o o 3 _: J_-, and J_?. SubstitutingORt' OR2_ OX_ _x , .

this expression into Eq. 5 we obtain the expression of Sutcliffe and Tennyson[7] for their

z-axis embedding coordinates.

It should be noted that g(2) in Table II is overly complex for triatomics. This is because

we could have factored out the rotation matrix left multiplying _,(2), and this rotation matrix

would collapse down to the unit matrix in Eq. 8. However tt:is rotation matrix is required

for the next sections, so we retain it here as well.

To obtain the z-axis embedding of Sutcliffe and Tennysm, we simply insert a rotation

that exchanges the z and z axes. This changes g(_) in only to a minor extent. We can also

exchange the z and y axis, if desired.[14)

Now consider the possibility that a depends on R1, R2, and X. The only changes are Eq.

31 is replaced by

and

Oa.. ,_.r O
O (a+ +--, (33)

002 - X-_X)zJ_ OX

O 0 . Oa

cgRi ' ORi 'X-_i J_?' (34)

where tile arrow means "replaced by", and these changes nlodi_, g(2) in a straightforward

manner. That is, it is not difficult to choose a so that the Eckart conditions[15] separating

vibration and rotation are satisfied. The only complication is the kinetic energy operator

matrix elements are no longer obtainable analytically, but it should be possible to obtain

accurate results numerically with very little additional cost compared to calculations keep-

ing a fixed. There is, of course, still the problem of singularities arising when the Eckart

conditions lead to ill posed equations at. linear configurations.



V. THREE VECTORS

When we have three vectors, we use tile results from the single vector case and tile two

vector case. \Ve still use the notation fu7 for tile total a n_ular momentum in the final

body-fixed frame, so we will change our notation for the t_vo vector result. For the two

vector sub-part, we will call the angular momentum J12, the _ody-fixed frame defined for it

bfl2, and the Euler angles a12, /3t2, and %2. Then we have

0

j lj2

for _ = 1 and 2, with 0h_ comprizing o 0 o 4bf12 jbfl)., and 4 b;le andORl ' OR2' OX_ ax _ az

0

j la

with 01_ comprizing o rbf3 rbI3b-G_, *',:3 , and -y:_ .

Next we have two choices. We can make the over-all Euler angles ¢3, 03, and &12, where

all2 is defined by

A(d_2, _12_.512) = A(ct_.,,/3t2, "Yt2)A T(¢3, 03, 0), (37)

or we could make the over-all Euler angles c_t2, J_12, and %2. It is equally easy to derive the

matrix 9 (a) for each case, but for illustration in this section, we consider the former case.

This is also the situation considered in Ref.ll, where it was called the ljk coupling scheme.

The later case would be treated as in the next section.

Thus we follow the procedure of the previous section to obtain

0

dg:rifl
-- , , _Jk,_l12 kz112 ,

j k _

(38)

for/3 = 1 and 2, and for/3 = 3,

o , o(,)& (39)
j la

%

where Oza comprizes a _' Ly3aF,o-?g_, L_3 , and where /;'F is the body-fixed frame defined by'

the Euler angles &a, 0a, and &,_. We then introduce the total angular momentum f_" to

eliminate /]aBF:

- (40)



The flmctional form of j_r is given by rotating J12 by &12:

7, _ Wbf3 0
j_ = A(0, 0, _2)J12 = ih o,_ '

0

06,12

(41)

where

j_ f .3 _ - ih
2 --

V_re also use

- cos &12 cot/312b_2 sin &12o3---_+ cos&12 CSC /312_
_12 (9 - (9 ,312 0+ cos c_12_ + sin (_1'2 CSCSill cot

o

0&:2

(42)

- - (9 - _ *9 -t- COS 912 cot/_12 )

- cos 712 csc 31_ + sm Yl2o_, o@._'_

•- , - o -, o sin "}'12cot f112_ (43)fill2 ih sm?12 csc/312o_U_ + c°s'_2o-_J12 _-

0

0"h2

o by usingto transform to differential expressions. Finally, we eliminate _

j_Y O (44)
= iho_x2"

In summary, we obtain

0
gj31_ l,

j t

z(3) is given bywhere vj._,

"Y12)gk,ol

z(3) _k Z3k(O,/312_ - \_(3)

Vj_l = -_(3)

vj_l

/3=1,2
, (46)

/3=3

o o 0 o o o jff_, jyy, andwith __(3) given in Table III, and 0t comprizing oR_ oR2 oR3 ox' o;h2 o_u

YzBE. It should be noted that when orthogonal coordinates are used, tile rotation matrices

A(0,/3_2,512) will collapse to give the unit matrix when ins;erted into Eq. 8. Only for

non-orthogonal coordinates do these give contributions to the flmctional form of the kinetic

energy operator.

Next let us re-address the issue of using 03, 03, and _'12 rather than _._, /3_, and 7_ as

the overall Euler angles. Since one can show that (see Eq. 37)

A(0, 3_,,, "_)A(cfi3, 03, _12) = A(at2,/312, _[12), (47)
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if we introduce the rotation A(0, b,_.]2, b_2), then when b = 0, we recover the c)3, 03, &_2

case, while when b = 1, we recover the ct_2, ill2, 7t2 case. TlLis is exactly analogous to the

rotation A(0, at)2, 0) introduced in the previous section. Then we have

where at_ flLt3, _/LB define the body-frame B.T. As before, we have

(49)

but now

and

0 _._ l_J 0 (50)
Ofll-_2 --+ -ibsin bfll2d_r - ibcos_,_q2_,y + a/),--_

0 0

0_/12 _ -ibJy7 + O'_12 (51)

We determined these last two relations by numerical experimentation. Thus we multiply

g(3) from the left by A(0, b,312, b'T_2), multiply the final three columns of the result from the

right by AT(0, bill2, b'}'12), then subtract ibsin b_'t2 times the fifth colunm from the seventh

cohmm, subtract ibcos b'} times the fifth column from the eighth coluinn, and subtract ib

times the sixth colunm from the ninth cohmm to obtain the matrix g(a) in the expression

0 -- V'A '(ctLB flLB, q'LB) Eyjdl t, (s2)
j t

where 0_ comprizes a 0 o _o o_ o ts_- d_-, and Jy_-.OR1 _ OR2 _ OR3 _ 0 X _ Ofll2' 0"_t2' J_

It should be noted that the rotation by bill2, b'}'_2 has no effect on the kinetic energy for

J=0.

Kinetic energy operators using the embedding defined by b have never been used before,

and it would be very interesting to explore the benefits that arise from allowing b to be

different from 0 or 1. One example that immediately comes to mind is this allows the z axis

to be aligned with the symmetry axis for XH3 molecules at the equilibrium geometry.

Although we do not do so here, it should be straightforward to introduce Eckart rotations

at this point. However, in contrast to the two vector case, it will not be possible to satisfy

the Eckart relations by varying a single parameter.
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VI. FOUR VECTORS

\\;hen we havefour vectors,one carl usethe results of a singlevector and the results of

three vectors,or one can use the results for two vectors twice. The former caseis exactly

analogousto the three vector casetreated above. Following the pattern given before,one

can easilyderivethe appropriate g(4) for either case. Since CH4 is a molecule of interest to

us, we will only consider the case when we use two vectors twice.

As in the three vector case, we need to change the two veer:or notation. For the first two

vector sub-part, we will call the angular momentum _12, the body-fixed frame defined for

it bf12, and the guler angles (_2, /312, and 712. The quantities for the second two vector

sub-part are defined analogously, except with the subscript 34. We will take o12, /312, and

%2 to define the body-fixed fl'ame BF(= bf12), so that we have for fl = 1 and 2,

0
gj_ll2(')._'i/3 -- _ Aji(Ctl2'/_12' ")112) P (2) {3112, (53)

j 112

with Oh., comprizing o o o -B,," -BF .BF- On_' OR,_' OX_2' 3_12, 3y1_, and ._z12, and for fl = 3 and 4,

o "-" d (54)
0eL.i, A -- _-_ Aji(OL12, ,_12, _'12) E Akj(_34, _4, ")'34) 2_.._9k/"34 134,

. j k /34

with 0ea_ comprizing 0 0 0 "ibf34 4bf34 and _;bf34 with
' ORa' c3R4' 0X34 'ax3'l , Jy34 , Jz3,1 ,

A(&34,/_34, '_34) _- A(ce34, _34, "/34) AT (cr12,/312: "_12)' (O5)

We proceed as before by introducing the total angular momentum, which because _'_F and

fB_" are sign reversed while _.a_F is not, yeilds

: Y+ (56)

However _._' is given by Eq. 42, so in the case of orthogonal coordinates where the rotation

A(5>1, _34, _34) vanishes in the kinetic energy operator due to orthogonality, we obtain a

quite simple expression in terms of the 15 operators o o o o o o -U,_'
C_Sl ' 0]_2 , OR 3 ' 0R 4 ' 0X12 ' 0X34 ' 3x3,1 '

•UF -t_ _ .Of34 .V134 .bf34 jBF j_F and jBF. -_\% can use both Eq. 42 and Eq. 43 to3!/.3.1, 3z34, ._x3.t , 31/34 , Jz3,1 , . ,

"BFconvert 3_a4 etc to.derivatives with respect to &34, ,_)34, and "}a4, so there are only 12 unique

operators.

In Table IV we give the resulting matrix in symbolic form. There it is understood that

the matrices g(2._) are the first three columns ofg (2), g(2.2) are the last three columns ofg (2),

and first three rows are for/5 = 1, the next for 13 = 2, etc.

12



Howeverthe kinetic energyoperator derived in this way doesnot couplevibration and

rotation in a symmetric manner. This is analogousto tile triatomic case when one treats

H20 with a = 0. So we need to introduce tile additional rota:ion A(cc_34, c,_Os4,c_'34), which

reverts to the above case when c =- 0, makes tile overall Euler angles _34, ,_34, %4 when

c = 1, and treats the two pairs of vectors more equivalently when c --- 1/2. This rotation is

included exactly as be%re, with the analog of relations 50 and 51 being

- - 0

7, .I3.7" C~' jB:y c_34JB:')_[_ 34_u'_d3,---+ -ic(-sinc3,_4cosc'/34_% +sinc93.1sin %4 -F cos --, (57)

0 0

--0_34 _/34' x -[- -I- 0_34
--+-ic(sinc-' fsy coscSa4j_:r) --, (58)

and
0 0

05, --Z4-i JU + (59)

When one considers cases where c is nonzero, the resulting expressions can become quit('.

complex. Since we are interested in including non-adiabatic corrections which in general

requires numerical techniques,J17] we will take a numerical approach to evaluate matrix

elements of the kinetic energy operator. In order to do this, one has to take care that the

singularities are treated properly. We do this by writing

gH) = y-_ g_4)f_, (60)
8

with f, equal to 1/R1, 1/R2, 1�Re, 1/R4, 1/sinx12, 1/sin X34, and 1/sin_a4. The g!4)will

always be finite. The we have

G,,, = h2/2 E f'f_'E 9;.,_gj,s','_'/P,_,s', (61)
ss' j#a'

and we use appropriate basis functions and quadratures which handle the singular factors.

VII. DISCUSSION AND CONCLUSIONS

\Ve have discussed tile procedure for producing kinetic energy operators for polyatomics

using polyspherieal coordinates and very general embeddings of body-fixed z axes. \Ve do

this by introducing the expression

0

, j l
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The matricesg can be very easilybuilt up from the results flom fewernumbersof vectors,

and the kinetic energyoperator coefficientsaresimply givenbydot products of cohnnnsof g.

Non-orthogonalcoordinatesystemsposeno formal difficulty howeverin practice, much

more complicatedexpressionsarise. We also show how to generalizethe a parameterized

axis embedding of Sutcliffe and Tennyson[7] to more than t.tHee atoms.

One motivation for this work was the derivation of the expressions for the four vector

case using non-orthogonal coordinates. One may ask why one would want to use non-

orthogonal coordinates since the kinetic energy operator is so much simpler for orthogonal

cooMinates? There are several reasons for this. One reason, put forward by Handy, J16]

is that the potential matrix elements are much simpler when one uses the physical bond-

length-bond-angle coordinates. While less of an issue for triatomics, this becomes very

important as the number of atoms increases, especially if one wants to use a single potential

energy surface for more than one isotopomer. The second reason is related to the treatment

of Born-Oppenheimer breakdown. We have showed the importance of including both first

and second order corrections for H20,[17] and since the second order correction gives rise

to cross terms in the kinetic energy operator, even when orthogonal coordinates are used,

the argument of simplicity no longer is valid. In addition, it is very useful for debugging

programs to be able to compare the results obtained using different coordinates. Finally, it

can be useful to turn to non-orthogonal coordinates to improve the convergence of the basis

flmction expansion. [18]

In addition to its utility for deriving expressions for the kir:etic energy operator, the ma-

trices g are also required in generating non-adiabatic correction flmction originally computed

for cartesian nuclear position vectors.J19]

In this work, we have not discussed what basis functions to use with these kinetic energy

operators. Basically there are only two restrictions: first of all the flmctions must give finite

matrix elements, and secondly they must adequately cover the Hilbert space for the problem

of interest. For triatomics with a ¢ 0, we used Jacobi polynomial basis functions to avoid

the singularities in the matrix elements.J20] For the three and four vector case, it is not

yet clear what changes one needs to make to ensure finite matrix elements when b or c are
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non-zero.
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TABLE I: Coordinatetransformationmatrix g(1).

OH.

x 0 0 -_
iR

y 0 1 0

z 1 0 0
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TABLE II: Coordinate transformation matrix gt'a). _, = 1 - a.

o o o ,lac .L¢ Jz
OR_ OR---_ Ox

- sin ax 0 - cos ax/rl 0 g cos ax/irl 0

0 0 0 - sin-gx/(ir'l sinx) 0 - cosgx/(irl sinx)

cos aX 0 - sin aX/rl 0 g sin ctx/',ir_ 0

0 sing X cos-gx/r2 0 a cos gx/ir2 0

0 0 0 - sin aX/(ir'2 sin X) 0 cos ,_x/(ir2 sin X)

0 cos aX - siIl _X/r2 0 -a sin_x/ir2 0

17



TABLE III: Coordinate transformation matrix _(a). _ = 1 - a.

0

OR1

0 0 0
Jx dy

Ox 03 O_
,lz

-sina X 0 0 -cosax/rl

0 0 0 0

cosax 0 0 - sinak/r_

0 sinax 0 cosfix/r2

0 0 0 0

0 cos ax 0 - sin-dx/r 2

0 0 0 0

0 0 0 0

0 0 1 0

gcosa X -gcos ax sin'_ cot _/rl 0

x co__/,,,

- sin ax sin _ - [sin ax cos "_cot fl 0

x csc x/r1 + cos ax]csc x/rL

a sin ax -_ sin a× sin "_cot _/rl 0

× cos_//"i

a cos ax -a cos ax sin _/cot [:'/r2 0

× cos_/_

- sin ax sin'_ - [sin ax cos @cot _) 0

x csc x/r2 - cos ax]csc x/r::

-asin_x asin_xsin_/cot fl/r2 0

X COS £//Y 2

-l/r3 0 0

0 csc fl/r3 - 1�Jr3

0 0 0

1/ir3

0

0 g cos a× sin

×(:so?_/i_'1

0 sinaxcos@csc fi

XCSC X/i'r'l

0 _sinaxsin_

x c_¢3/i_'1

0 a cos ax sin

xcsc 3/ir2

0 sinaxcos@csc l)

xcsc x/ir2

0 -a singx sin')

xc_c _/i,._

0

-cotfl/ir3

0 0

18



TABLE IV: Coordiilate transformation ma;rix g(4).

OR1

o o o o o o o o & jy
G_R2 0XI2 _3 0R4 _X34 0_34 _ _

g(2.t) 0 g(2. )R1 g(2.2)

0 ATg(2.D ATg(2.2)R_ 0

RI

cos &a4 cot l)34 sin &a4 - cos &a4CSC/3a4

= sin (_34 cot [)3,1 - cos (_34 - siI1 _34c5c_34

-1 0 0

R2

-- COS "_a4 csc_34 sin a/34 cos _a4 cot/_a4

= sin _¢a4csc/_a4 CO8 "}34 -- Sill z/34 COl; _34

0 0 1

,lz

A z = Ag(&a4,/_a4,_a4) 0

0 AT (&a,1,/_34, _¢34)
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